A Tunable Waveguide-Coupled Cavity Design for Efficient Spin-Photon Interfaces in Photonic Integrated Circuits
نویسندگان
چکیده
A solid state emitter coupled to a photonic crystal cavity exhibits increased photon emission into a single frequency mode. However, current designs for photonic crystal cavities coupled to quantum emitters have three main problems: emitters are placed near surfaces that can degrade their optical properties, the cavity fluorescence cannot be collected into a single useful mode for further routing, and post-fabrication tuning is not currently possible in a stable and reversible manner for each node individually. In this paper, we introduce a hybrid cavity design with minimal fabrication of the host material that keeps the emitter ≥ 100 nm from all surfaces. This cavity has an unloaded quality factor (Q) larger than 1 × 10 and a loaded Q of 5.5 × 10 with more than 75% of the emission coupled directly into an underlying photonic integrated circuit built from a convenient material that provides low loss waveguides. Finally this design can be actively and reversibly tuned onto resonance with the emitter, allowing tuning over more than 10 times the cavity linewidth while maintaining ≥ 50% of the Q factor with no effects to other cavities on the same chip.
منابع مشابه
A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source
The efficient delivery of photons from light sources to photonic circuits is central to any fibre-optic or integrated optical system. Coupling light emitters to optical fibres or waveguides determines the photon flux available in, and therefore the performance of, photonic devices used in applications such as optical communication and information processing. Many solutions have been proposed to...
متن کاملWaveguide-coupled photonic crystal cavity for quantum dot spin readout.
We present a waveguide-coupled photonic crystal H1 cavity structure in which the orthogonal dipole modes couple to spatially separated photonic crystal waveguides. Coupling of each cavity mode to its respective waveguide with equal efficiency is achieved by adjusting the position and orientation of the waveguides. The behavior of the optimized device is experimentally verified for where the cav...
متن کاملDesign and Development of High Gain, Low Profile and Circularly Polarized Cavity-backed Slot Antennas Using High-order Modes of Square Shaped Substrtae Integrated Waveguide Resonator
In In this paper, two low profile, single fed cavity backed slot antennas providing a circularly polarized (CP) wave are introduced. One of the antennas presents a right-handed CP (RHCP) wave, while the other one offers a left handed CP (LHCP) wave. The proposed antennas consist of a square shaped Substrtae Integrated Waveguide (SIW) cavity incorporatng two couples of radiating slots to radiate...
متن کاملIncreasing Directional Intensity of Output Light Beam from Photonic Crystal Slab Outlet Including Micro Cavity Resonators
in this paper we modified a simple two-dimensional photonic crystal waveguide by creating micro cavity resonators in order to increase the output light emission which can be applicable to photonic integrated circuits. The micro cavity resonators are constructed by removing two tubes close to the waveguide output. Coupling emitted light from waveguide with those micro cavities, results increasin...
متن کاملIntegrated quantum photonic devices with single quantum dot emitters
Integrated quantum photonic devices with single quantum dot emitters A. Mark Fox University of Sheffield The integration of semiconductornanostructures with on-chip photonic devices offers the possibility to incorporate quantum-dot (QD) single-photon sources into advanced quantum-optical circuits. In order achieve this goal, a number of key photonic components have to be developed in a platform...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016